Trending
Opinion: How will Project 2025 impact game developers?
The Heritage Foundation's manifesto for the possible next administration could do great harm to many, including large portions of the game development community.
Evaluation of properties of floating-point depth buffers with regards to depth spans used in planetary rendering
I had always thought that using a floating point depth buffer on modern hardware would solve all the depth buffer problems, in a similar way than the logarithmic depth buffer but without requiring any changes in the shader code, and having no artifacts and potential performance losses in their workarounds. So I was quite surprised when swiftcoder mentioned in this gamedev.net thread that he had found that the floating point depth buffer had insufficient resolution for a planetary renderer.
The value that gets written into the Z-buffer is value of z/w after projection, and it has an unfortunate shape that gives enormous precision to a very narrow part close to the near plane. In fact, almost half of the possible values lie within two times the distance of the near plane. In the picture below it's the red "curve". The logarithmic distribution (blue curve), on the other hand, is optimal with regards to object sizes that can be visible at given distance.
Floating point depth buffer should be able to handle the original z/w curve because the exponent part corresponds to the logarithm of the number.
However, here's the catch. Depth buffer values converge towards value of 1.0, or in fact most of the depth range gives values very close to it. The resolution of floating point around 1.0 is entirely given by the mantissa, and it's approximately 1e-7. That is not enough for planetary rendering, given the ugly shape of z/w.
However, the solution is quite easy. Swapping the values of far and near plane and changing the depth function to "greater" inverts the z/w shape so that it iterates towards zero with rising distance, where there is a plenty of resolution in the floating point.
I've also found an earlier post by Humus where he says the same thing, and also gives more insight into the old W-buffers and various Z-buffer properties and optimizations.
I tried to compute the depth resolution of various Z-buffers for whole range from 0 to 10,000 kilometers. Here's the result (if I didn't make a mistake), showing the resolution at given distance (lower is better):
The red curve shows resolution of the logarithmic Z-buffer. It scales linearly with distance, what means that in the screen space it's constant. That's also an ideal behavior.
The blue curve shows the resolution of 32 bit floating point depth buffer with swapped far and near plane. The spikes are formed with each decrement of the exponent. Floating point depth buffer has worse resolution than the logarithmic one, but it should be still sufficient. The green line is for an ideal Z-buffer that has depth resolution of 0.12 millimeters at one kilometer. It also happens to be the worst case bound for the floating point depth buffer.
Read more about:
BlogsYou May Also Like